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ABSTRACT
Recently, there has been an increased focus on modeling
uncertainty by distributions. Suppose we wish to compute
a function of a stream whose elements are samples drawn
independently from some distribution. The distribution is
unknown, but the order in which the samples are presented
to us will not be completely adversarial. In this paper, we
investigate the importance of the ordering of a data stream,
without making any assumptions about the actual distri-
bution of the data. Using quantiles as an example appli-
cation, we show that we can design provably better algo-
rithms, and settle several open questions on the impact of
order on streams. With the recent impetus in the investiga-
tion of models for sensor networks, we believe that our ap-
proach will allow the construction of novel and significantly
improved algorithms.

Categories and Subject Descriptors
F.2 [Analysis of Algorithms & Problem Complexity]

General Terms
Algorithms, Design, Performance, Theory

Keywords
quantiles, data streams, random order, adversarial order

1. INTRODUCTION
Over the last decade streaming has gained significant cur-

rency as a feasible paradigm for situations involving large
data. Although significant progress has been made in de-
veloping algorithms for data streams, much remains to be
understood. Consider the following example.

Example 1. In the model-driven data acquisition scenario
described in [7] we want to create a quantile based summary
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of the distribution of data for each of a number of sensor
nodes. Given a fixed space bound S we have two choices—
either to store a set of S samples or use a streaming algo-
rithm using space S but drawing more samples. It appears
reasonable to expect that in the latter, as we draw more sam-
ples, we should get better estimates. But, in the case of com-
puting an estimate of the median, even for one sensor node,
the existing algorithms find an element of rank ( 1

2
±ε)n where

ε = 1/S (ignoring polylogarithmic factors). Suppose we now
doubled the number of observations, these algorithms would
still return an item of “relative rank” ( 1

2
± ε), i.e. the ac-

curacy would not improve. This is counter-intuitive, if we
observe more data, we should have more accurate estimates.
In statistical terminology, the estimator is not consistent,
i.e. increasing the sample size does not decrease the proba-
bility of being far from the quantity being estimated. On the
other hand, if we store all the data, the estimator would be
consistent. A natural question in this regard is, are there
consistent estimators whose space use is significantly sub-
linear in the amount of data?

The issue is one of modeling. In the above example, the
known algorithms will try to provision for more data being
input and settle for pessimistic estimates. In a sense, the
benefit of using more data is being offset by the fact that
there is more potential for an adversary to arrange for the
data to be presented in a misleading fashion.

In general, there are two components to an instance of
a data stream problem: the object O described by the ele-
ments in the stream, e.g., the sensor readings in the above
example, and the order in which the elements arrive. Ag-
gregate statistics of the data, e.g., mean, median, etc., are
typically independent of the order of these elements in the
stream. The importance of the order is the extent to which
it makes it difficult to compute the desired function. When
proving performance guarantees of streaming algorithms most
of the existing literature assumes that O is worst-case and
that the order of the elements is chosen adversarially.

These two, the worst case input, and the order in which it
is presented, can be orthogonal issues depending on the sce-
nario, e.g., as above. The distribution of values of the sensor
may be worst case (i.e., it is not a nice distribution) but if
we have reason to believe that data elements are samples in-
dependently drawn from some distribution, it is plausible to
believe that the order of these data elements is random. In
general it might be too much to assume that the order is en-
tirely random. Rather, there may exist patterns or trends on
a small scale but, on a larger scale things “appear” random.
We may assume that these local aberrations are generated
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by an adversary but that this adversary has limited power.
We now describe such a scenario.

Example 2. Consider a real time network monitoring set-
ting where the data stream consists of TCP packets, giga-
bytes of which are flowing past in a short time. The statis-
tical assumptions made by queuing theory to analyze TCP
packets need not be perfect, but their success implies that it
is unlikely that there is a “genie in the network” deliver-
ing all packets at exactly the wrong point of time. Even if
such an adversary existed, constrained in time and space,
the adversary will have difficulty producing a bad input, be-
cause that in itself requires substantial resources. The “ad-
versary” in this process is the network itself. Some packets
will be delayed because of race conditions and the behavior of
the network. But all packets will not be affected in the worst
possible way. In effect, we would see that the packets be-
have according to a distribution and in the aggregate scheme
of things this distribution will be an accurate model. It is
no surprise that one of the most important applications of
streaming and approximate computation is to find “aggre-
gate” properties of the data—we believe that the aggregate
properties signify something about the characteristics of the
input.

In the previous two examples, we viewed the data in the
stream as being stochastically generated. This gave rise to
the belief that it was not ordered adversarially.1 The follow-
ing is a scenario in which we dictate the order of the stream.
Naturally we can therefore ensure it is non-adversarial!

Example 3. Consider a scenario where we are estimat-
ing the selectivity of operators or some aggregate property by
sampling tuples from a database [5, 16, 15]. Can we expect
that the order in which we receive the samples is random?
The answer depends on the architecture one is dealing with,
but in several situations the answer is likely yes, since we
are controlling the sampling. Consider the “backing sam-
ple” architecture proposed by Gibbons, Matias, and Poosala
in [10, 9] where a large sample is stored in the disk and
that sample is used to periodically correct estimates of data.
Since the backing sample is large, we can use a streaming al-
gorithm to make a pass over this data. Since we are storing
the sample we can ensure that the order is not adversarial.
The data structures for backing sample use hashes to en-
able O(1) lookup and updates—a good hash function implies
that the samples (in different pages) are stored in a random
order.

Likewise, consider the pipelined hash join scenario and
assume we are interested in estimating aggregate statistics
“on-the-fly” [18, 3, 2, 1], possibly to decide if we should
switch to an alternative evaluation plan. The records are
stored in a hash table and if we simply make a linear pass
over the data and use a streaming algorithm, the data is
uncorrelated across the buckets.

In the next scenario, the semantics of the data make it
a fair assumption that some fields in a database are un-
correlated. We note that several query optimizers use such
assumptions.
1Note the connection with the problem of string compres-
sion. Arguments from Kolomogorov complexity prove that
there do not exist string compression algorithms that work
well on all strings. One of the main reasons for the success of
compression algorithms has been a statistical view of input
and not an adversarial view.

Example 4. Consider a database of salaries where the
primary key is the “name.” If we are seeing tuples sorted in
the primary key is it reasonable to expect that the “salary”
field is ordered at random? By randomly ordered we do not
mean uniformly distributed, but the salary in a Jane Smith
tuple which we are looking at, is likely to be any salary in
the salary distribution. The salaries could be distributed as
Zipf, exponential, anything. This assumption of random or-
der is likely true to a first order of approximation (in this
particular case the assumption appears justified; in general
the standing assumption has been that the tuples in the same
page are correlated, while the correlation across pages are not
as strong, see [5].) If we want to find the median salary of
the people in our database, can we use the uncorrelatedness
in order information effectively to devise better algorithms?
Our algorithms would be “self-checking” in the sense that if
any correlation is present, the algorithm would give a coarser
guarantee, but it would be no worse than an algorithm that
made no assumptions about the order.

A common thread emerges from the examples—in many
scenarios we can relax the assumptions about the order in
which the data is seen by an algorithm. This gives rise to
the following:

Question. Can we use the fact that the source generating
a data stream is a stochastic process to develop better algo-
rithms? Can we model an adversary that accurately reflects
the small scale local changes/correlations that arise in data?
Can we develop algorithms that are resilient to such adver-
sary and perform provably better than algorithms devised for
all powerful adversaries?

We answer the questions in the affirmative. We note that
this is an extremely natural model and has not been well
studied. The notion of a sequence of observations drawn at
random exists in learning theory literature. But the primary
focus there has not been devising space bounded streaming
algorithms, but online algorithms with unbounded space.

1.1 Our contributions

1. We initiate the study of data streams under limited
adversarial ordering, a notion we formally define in the
next section. We focus on some of the problems raised
in the examples and limit our technical discussion to
quantile estimations and equidepth histograms. We
show that there is significant algorithmic advantage to
be derived from limiting the power of the adversary in
data streams. As a consequence, for sensor networks
and monitoring applications we expect the new class
of algorithms to be significantly better and useful in
practice.

2. We show that using polylogarithmic space, in a single
pass, (where the size of stream is n) for any k, we

can find an element of rank to within k ±O(k
1
2+ε) for

streams that are ordered by an adversary of limited
power. This improves upon the best results known
for fully adversarial streams which approximates the
median by an element of rank n

2
± εn in polylog space.

These result have natural implications for Equidepth
histograms.
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3. We resolve several open questions related to streams
under completely random order. Kannan [19, 24] con-
jectured that a streaming algorithm based on a com-
plete random order, would require only one extra pass
in the adversarial model. We resolve this conjecture
in the negative. We approximate the median in one
pass to a level of accuracy which would require a poly-
nomial blowup in space in the adversarial setting. It
also follows that, in complete random order streams,
using polylog space, we can find the exact median in
O(log log n) passes. This was conjectured by Munro
and Paterson [23] and has been unresolved since 1980.

1.2 Related Work
Munro and Paterson considered sorting and selection with

limited storage [23] in one of the earliest papers on the data
stream model, i.e., 1980, close to Morris’s work on counting
the number of items in sublogarithmic space [22] and the
work of Flajolet and Martin on probabilistic counting [8].
The problem has received a lot of attention in recent years
starting from the work of Manku, Rajagopalan, and Lind-
say [21, 20]. The authors of [21, 20] showed that we can find
an element of rank n

2
±εn

2
using O( 1

ε2
log n) space. This was

improved to a deterministic O( 1
ε
log n) space algorithm by

Greenwald and Khanna [12]. This was extended to a model
supporting deletions by Gilbert et al. [11]. Gupta and Zane
[14] discussed the issues involved in approximating the kth
smallest element in a stream by an element of rank k ± εk.
Exact selection is possible in polylog space if the algorithm
may have O(log n) passes over the data [23].

The complete random permutation or random order model
introduced in [23] has received little attention to date. De-
maine, López-Ortiz, and Munro [6] considered the frequency
estimation of internet packet streams assuming the packets
arrive in a random order. Guha, McGregor, and Venkata-
subramanian [13] make connections between random order
model and various oracle models considered for property
testing distributions.

2. DEFINITIONS AND PRELIMINARIES
We first define the notion of a limited adversarial ordering.

Definition 1 (t-bounded adversary). Given a stream
of elements x1, . . . xn we consider an adversary upstream
of our algorithm that can reorder the elements subject to
having limited memory to do this reordering. Specifically,
a t-bounded adversary is an adversary that can only delay
at most t elements at a time and therefore can ensure that
the stream received is any stream of the form xσ(1), . . . xσ(n)

where σ is any permutation such that, for all i ∈ [n], |{j ∈
[n] : j < i and σ(i) < σ(j)}| ≤ t. E.g. with t = 2 the stream
1, 2, 3, 4, 5, 6, 7, 8, 9 can become 3, 2, 1, 6, 5, 4, 9, 8, 7
or 3, 4, 5, 6, 7, 8, 9, 1, 2 but not 9, 8, 7, 6, 5, 4, 3, 2, 1.
A stream is t-random if it is generated by a t-bounded ad-
versary acting on a stream whose order is uniformly chosen
from all possible orderings.

Therefore a fully adversarially ordered stream is (n − 1)-
random and a totally randomly ordered stream is 0-random.
We now make the following definition regarding sub-streams
of the data stream.

Definition 2. Rank of an item x in a set S is defined
as Rank[x,S ] = |{x′|x′ ≤ x, x′ ∈ S}|. Given any (j′, a, b)
define Γ(j′, a, b) = {xj |j > j′, a ≤ xj ≤ b}.

The following lemma follows immediately from the above
definitions.

Lemma 1. Consider a t-random stream and Γ(j′, a, b). A
length w contiguous sub-stream S′ of Γ(j′, a, b) is of the form
(A∪B) \C where A is a random size w subset of Γ(j′, a, b)
and B ⊂ Γ(j′, a, b), C ⊂ A have size |B| = |C| ≤ t.

3. ONE PASS APPROXIMATE SELECTION
In this section we show how to perform approximate se-

lection in a t-random stream. We will present the algorithm
assuming the exact value of the length of the stream, n, is
known in advance. In the following sections we will show
that this assumption is not necessary and also improve the
bounds when trying to select low rank elements.

Our algorithm proceeds in “phases” each composed of two
distinct “sub-phases.” In each phase we aim to narrow the
area of our search such that, subsequently, we are only look-
ing in a sub-stream of values in a specific range. In general,
the relative rank of the element we look for in the sub-stream
will not be the same as the rank of the element we were ini-
tially looking for. So we need to also determine the rank
of the element we are now looking for. See Fig. 1 for the
algorithm.

Lemma 2. At the end of the sampling phase, whp, we
return S that includes u, v ∈ Γ(i) such that2 k(i) − εΓ(i) ≤
Rank(u, Γ(i)) ≤ k(i) ≤ Rank(v, Γ(i)) ≤ k(i) + εΓ(i).

Proof. We prove there exists, with probability > 1−2/n,
an element u ∈ S with the required properties. The proof for
v is identical. Assume k(i) ≥ εΓ(i) otherwise LBi suffices.
Consider the set S′ of the first 48(log n + t)/ε elements of
Γ(i). Let X be the set of elements x ∈ S′ such that k(i) −
εΓ(i) ≤ Rank(x,Γ(i)) ≤ k(i). Now E (X) ≥ ε|S′| − t and,
using the Chernoff bound,

Pr
“
|X| <

ε

2
|S′|
”

= Pr (|X| < (1 − 1/4)E (X))

≤ exp(−(48 log n + 47t)/48)

≤ 1/n

Then Pr
`
X ∩ S = ∅˛̨|X| > ε

2
|S′|´ ≤ (1−ε/2)2 log n/ε ≤ 1/n.

We now ascertain that our estimate Gap(i) for Γ(i) is
sufficiently accurate.

Lemma 3 (Mind the Gap). Whp, |Gap(i) − Γ(i) | ≤
c3(s

′ + t +
p

n log n) where c3 = 8√
c1(1−4ε)

.

Proof. The proof is by induction. The base case, i = 1,
follows since |Γ(1)| = n and we are assuming that we know n
exactly. (As noted, we will preempt this assumption in the
next section.) The induction hypothesis is that |Gap(i) −
Γ(i)| ≤ c3(s

′ + t +
√

n log n).
Define ΔC(i) = C(i, �+1)−C(i, �) and let μ be the number

of items between yi� and yi(�+1) in S′. Note that μ ≤ s′. It
follows that,

|Γ(s(i), yi�, yi(�+1))|
= μ + ΔC(i) + |Γ(s(i + 1), yi�, yi(�+1))|
= μ + ΔC(i) + Γ(i + 1) ,

2Note that here and henceforth we abuse notation and de-
note |Γ(i)| as Γ(i).
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Selection Algorithm:

1. Let c1 = 1/10, c2 = (1/c1 + 9 8√
c1(1−ε)

), s′ = 48ε−1(log n + t) and s = 2ε−1 log n.

2. Each phase i starts corresponding to the s(i)th item in the stream. Initially s(1) = 1.

3. We maintain two bounds LBi, and UBi which are bounds on the range of elements in which we are interested.
Initially LB1 = −∞ and UB1 = ∞.

4. We maintain a value k(i) which indicates the rank of the element we are searching for in the set Γ(i) =
Γ(s(i), LBi, UBi). Initially k(1) = k.

5. We maintain an estimate, Gap(i), of |Γ(i)|. Initially Gap(1) = n.

6. Phase i:

(a) If Gap(i) ≤ 1
c1

(
√

n log n + t + s′) output LBi and UBi. Both of them are good approximations for the
element of rank k in the original stream and we stop.

(b) Sample sub-phase: From the next s′ elements, call them S′, we sample s elements. Call the sampled
elements yi1 ≤ yi2 ≤ . . . ≤ yis. Let yi0 = LBi and yi(s+1) = UBi. Call the set S = {yi�}0≤�≤s+1.

(c) Estimate sub-phase: Maintain s + 1 counters (C(i, �))1≤�≤s+1. For the next α(i) = c1Gap(i) elements, if
an element is smaller than yi� then increment C(i, �).

(d) If for some yi� we have
˛̨̨

1
c1

C(i, �) − k(i)
˛̨̨
≤ c2

√
n log n we have no more phases.

(e) Set LBi+1 = yi� and UBi+1 = yi(�+1) where yi�, yi(�+1) s.t. 1
c1

C(i, �) ≤ k(i) ≤ 1
c1

C(i, � + 1).

(f) Set k(i + 1) = (1 − c1)
“
k(i) − C(i,�)

c1

”
and Gap(i + 1) = (C(i, � + 1) − C(i, �))

“
Gap(i)

α(i)
− 1
”
.

Figure 1: The Selection Algorithm

since there are ΔC(i)+μ elements in the stream starting at
s(i) and ending at s(i+1) whose values are between yi� and
yi(�+1). Now, using the Chernoff bound and Lemma 1 we
obtain,

Pr

 ˛̨̨
˛ΔC(i)

α(i)
− ΔC(i) + Γ(i + 1)

Γ(i)

˛̨̨
˛ >

2t

α(i)
+

s′

Γ(i)
+ 8

s
log n

α(i)

!

≤ 1

n
.

Therefore, with probability at least 1 − 1/n,

8

s
log n

α(i)
+

2t

α(i)
+

s′

Γ(i)

≥
˛̨̨
˛ΔC(i)

α(i)
− ΔC(i) + Γ(i + 1)

Γ(i)

˛̨̨
˛

=
1

Γ(i)

˛̨̨
˛ΔC(i)

„
Γ(i)

α(i)
− 1

«
− Γ(i + 1)

˛̨̨
˛

≥ 1

Γ(i)

˛̨̨
˛ΔC(i)

„
Gap(i)

α(i)
− 1

«
− Γ(i + 1)

˛̨̨
˛

−ΔC(i)

Γ(i)

|Gap(i) − Γ(i) |
α(i)

.

The last inequality follows by the triangle inequality. Sub-

stituting Gap(i+1) = ΔC(i)
“
Gap(i)

α(i)
− 1
”

and rearranging

gives,

|Gap(i + 1) − Γ(i + 1)|

≤ s′ +
2tΓ(i)

α(i)
+ Γ(i)8

s
log n

α(i)
+

ΔC(i)

α(i)
|Gap(i) − Γ(i) |

≤ s′ +
2tGap(i)

α(i)
+ 8Gap(i)

s
log n

α(i)

+|Gap(i) − Γ(i) |
 

2t

α(i)
+

ΔC(i)

α(i)
+ 8

s
log n

α(i)

!

≤ s′ +
2t

c1
+

8√
c1

p
n log n

+c3(s
′ + t +

p
n log n) (ε + ε + 2ε) .

The last line follows since ΔC(i)/α(i) ≤ ε by the Chernoff
bound and α(i) ≥ √

n log n+t+s′. Therefore c3 = 8√
c1(1−4ε)

is sufficient to ensure |Gap(i + 1) − Γ(i + 1)| ≤ c3(s
′ + t +√

n log n).

Observe that we do not run out of elements before finding
an element whose rank appears to be close to the desired
rank. The following lemma quantifies how the error accu-
mulates with each phase.

Lemma 4. Whp, Rank(yi�, Γ(i)) = C(i,�)
c1

±c4(
√

n log n+

t + s′) where c4 = ( 8
c1

+ 9c3).

Proof. In each phase we estimate ŷi = Rank(yi�, Γ(i))
as 1

c1
C(i, �). Using Lemma 1 and the Chernoff bound we
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can see that with high probability,˛̨̨
˛ ŷi

Γ(i)
α(i) − C(i, �)

˛̨̨
˛ ≤ 8

p
α(i) log n + t + s′ ,

where s′ is an upper bound on the number of elements less
than yi� in S′. Therefore,˛̨̨

˛ŷi − 1

c1
C(i, �)

˛̨̨
˛

≤
˛̨̨
˛ŷi − Γ(i)

α(i)
C(i, �)

˛̨̨
˛+
˛̨̨
˛Γ(i)

α(i)
C(i, �) − 1

c1
C(i, �)

˛̨̨
˛

≤ Γ(i)

α(i)
(8
p

α(i) log n + t + s′)

+

˛̨̨
˛Γ(i)

α(i)
C(i, �) − Gap(i)

α(i)
C(i, �)

˛̨̨
˛

≤ |Gap(i)| + |Gap(i) − Γ(i)|
α(i)

(8
p

α(i) log n + t + s′)

+ |Γ(i) − Gap(i)|

≤
„

1

c1
+ c3

√
n log n + t + s′

α(i)

«
(8
p

α(i) log n + t + s′)

+c3(
p

n log n + t + s′)

≤
„

8

c1
+ 9c3

«
(
p

n log n + t + s′) ,

where the last two inequalities use Lemma 3 and the fact
that α(i) ≥ √

n log n + t + s′ respectively.

Theorem 1. If we know the exact length of the stream,
then given any k, in a single pass over a random stream we

can find an element of rank k ± O(nε′ (
√

n + t + s′)) with
high probability using polylog space. The constant depends
exponentially on ε′.

Proof. Let x be the value returned be the algorithm.
Let k̂(i) = Rank(x,Γ(i)). Whp, the number of elements
between x and yi� in the α(i) elements we saw in phase i is

c1(k̂(i) − ŷi) ± O(
√

n log n + t + s′). Therefore,

k̂(i) = k̂(i+1)+ŷi+c1(k̂(i)−ŷi)±O(
p

n log n+t+s′) . (1)

Lemma 4 implies that ŷi = 1
c1

C(i, �) ± O(
√

n log n + t +

s′) and by definition k(i + 1) = (1 − c1)(k(i) − 1
c1

C(i, �)).
Therefore from Eq. 1 we deduce,

(1 − c1)|k̂(i) − k(i))|
= |k̂(i + 1) − (1 − c1)k(i) + (1 − c1)ŷi|

±O(
p

n log n + t + s′)

= |k̂(i + 1) − k(i + 1)| ± O(
p

n log n + t + s′) .

Let the algorithm terminate in phase p. Observe that
since the number of elements decrease by a factor of at least

2ε, p ≤ (log n)/ log(1/2ε). If ε < 1
2
(1 − c1)

1/ε′ , then the
above recurrence relation yields,

|k̂(1) − k(1)| ≤ O

„√
n log n + t/ε

(1 − c1)p

«

= O

 
n

log 1
1−c1

log(1/2ε) (
p

n log n + t + s′)

!

≤ O
“
nε′(

√
n + t + s′)

”
.

Note: We can alter the algorithm to continue estimating
the ranks in Γ(i) of all the elements returned in the sample
at the ith phase. This allows us to “self–correct” in the
sense that we will always output elements with ranks that
sandwich the desired rank.

3.1 Generalizing to Unknown Stream Lengths
The algorithm in the previous section assumed that we

know the precise value of n, the length of the stream. As
this is not usually the case we now discuss a way around
this assumption. First we argue that, for our purposes, it is
sufficient to only look at half of the stream.

Lemma 5. Assume the stream is t-random. Let the set of
values in the entire stream be S and let S′ be the values in a
contiguous sub-stream of length ñ ≥ n/2. Then whp, the k̃th

smallest element of S̃ has rank k = k̃
ñ
n± 2(

q
8k̃ log n + 4t).

Proof. Let a = k̃/4ñ. Let the elements in S be v1 ≤
v2 ≤ . . . ≤ vn. Let X = |{v1, . . . van+b} ∪ S′| and Y =
|{v1, . . . van−b−1} ∪ S′|. Let X ′ and Y ′ be random variables
distributed as Bin(ñ, a + b/n) and Bin(ñ, a − (b + 1)/n)

respectively. If b = 2(

q
8k̃ log n + 4t) then the probability

that the element of rank añ in S′ has rank in S outside the
range [an − b, an + b] is less than,

Pr (X < añ) + Pr (Y > añ)

≤ Pr
`
X ′ < añ + t

´
+ Pr

`
Y ′ > añ − t

´
≤ Pr

`
X ′ < E

`
X ′´+ t − b/2

´
+Pr

`
Y ′ > E

`
Y ′´− t + b/2

´
≤ 2 exp

`−(b/2 − t)2/(3(añ + b))
´ ≤ 1/n .

To get around not knowing n we make multiple instan-
tiations of the algorithm presented in the previous section.
Each instantiation corresponds to a guess of n. Let β = 1.5.
Instantiation i guesses a length of

˚
4βi
ˇ−¨βi

˝
+1 and is run

on the stream starting with the
¨
βi
˝
th data item and ending

with the
˚
4βi
ˇ
th data item. We remember the result of the

algorithm until the 2(
˚
4βi
ˇ − ¨βi

˝
+ 1)th element arrives.

We say the instantiation has been canceled at this point.

Lemma 6. At any given time there are only a constant
number of instantiations. Furthermore, whenever the stream
terminates, at least one instantiation has run on a sub-
stream of at least half the total length.

Proof. Consider the tth element of the data stream. By
this point there have been O(logβ t) instantiations made.
However, Ω(logβ t/6) instantiations have been canceled. Hence
O(logβ t − logβ t/6) = O(1) instantiations are running. We
now show that there always exists a “good” instantiation,
i.e. one which has been running on at least half the stream.
The ith instantiation gives a useful result if the length of the
stream n ∈ Ui = {¨4βi

˝
+ 1, . . . , 2(

˚
4βi
ˇ − ¨βi

˝
+ 1)]. ButS

i≥0 Ui = N \ {0, 1, 2, 3, 4} since for all i > 1,
¨
4βi + 1

˝ ≤
2(
˚
4βi−1

ˇ− ¨βi−1
˝

+ 1).

We can therefore generalize Theorem 1 as follows,

Theorem 2. Whp, given any k, in a single pass over a

random stream we can find an element of rank k±O(n1/2+ε′ ).
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3.2 Approximate Selection for Low Rank Items
We now consider the problem of finding elements with

small rank, i.e. k = o(n). Assume that k, the rank of the
element to be selected, is at least ε−1 log n since otherwise
storing the ε−1 log n smallest elements is sufficient for exact
selection. The algorithm is in two parts: 1) In the first half
of the stream we find an element u which we will prove has
rank, in the entire stream, between k and 10k. To choose
u we sample (n log n)/k elements and store the (10 log n)
smallest elements from this sample. Let u be the (10 log n)th
smallest element. 2) In the second half of the stream we run
the algorithm in Section 3 with UB1 = u.

Lemma 7. Whp, the rank of u in the entire stream is
20k ± 2(6k +

√
128k log n + 4t).

Proof. We first prove that the rank of u in the first half
of the stream is 10k ± 8k. Let the elements in the first half
of the stream be S1 = v1 ≤ v2 ≤ . . . ≤ vn/2. Let w =
(n log n)/k. Let the sample of w elements from the first half
of the stream be S′. Let X = |{v1, . . . , v10k+b}∩S′| and Y =
|{v1, . . . , v10k−b−1} ∩ S′|. Then E (X) = (10k + b)2w/n =
10 log n + (b log n)/k and E (Y ) = (10k − b − 1)2w/n =
10 log n − ((b + 1) log n)/k. If b = 8k then probability that
the 10 log n th smallest element of S′ has rank (in S1) outside
the range [10k − b, 10k + b] is less than,

Pr (X < 10 log n) + Pr (Y > 10 log n)

≤ Pr

„
X < E (X) − b log n

k

«

+ Pr

„
Y > E (Y ) +

b log n

k

«
≤ 2 exp

`−(b log n/k)2/(3(10 log n + (b log n)/k))
´

≤ 1/n .

Then by appealing to Lemma 5 we get the result claimed.

Theorem 3. Whp, given any k, in a single pass over a

random stream we can find an element of rank k±O(k1/2+ε′).

4. CONSEQUENCES

4.1 Exact Selection in Multiple Passes
A natural question arises from the one pass polylog space

±O(n1/2+ε′ ) approximation. Observe that before the start
of the stream the element sought after could have been one
of n elements. After the pass we have an element whose rank

is within O(n1/2+ε′ ) of the element which we were seeking.
If we view the number of candidate elements, that number

followed a recursion n → n1/2+ε′ . Thus after O(log log n)
passes we can expect to arrive at a point where we have
O(log6 n) candidates and we solve the problem by brute
memory at that point. The idea as stated does not im-
mediately work. In the first pass we are looking at a ran-
dom permutation; but after the first pass how do we ensure
that the random permutation property—particularly since
we have already looked at the numbers, how do we ensure
that the numbers are random? The core of the argument is
the following lemma. It is crucial, but is almost proven by
straightforward inspection.

Lemma 8. Consider the elements S between LBr+1, UBr+1,
after the pass. Let the input order be π. Consider another

order π′ where all elements of S are permuted among them-
selves, but all elements not in S are not touched. Then the
algorithm will also end up in the same values for LBr+1, UBr+1

with input π′ instead of π.

From the above we can easily see that the probability
of observing a particular permutation of S which is con-
ditioned on LBr+1, UBr+1, is exactly the same as observ-
ing any other permutation of S. Therefore conditioned on
LBr+1, UBr+1 the numbers between the bounds are in ran-
dom order. Therefore we can bootstrap at this point, and
the two stage algorithm will have an approximation guaran-

tee of O(n1/4+ε′ ). Repeating this process Θ(log log n) times
we get the following:

Theorem 4. Given any k, in O(log log n) passes over a
random stream we can find an element of rank k with a high
probability in polylog space.

4.2 Equi-Depth Histograms
Equidepth Histograms use quantiles to approximates the

data. The B buckets are defined by the B-quantiles of the
data, i.e., the items of rank n/(B +1), . . . , nB/(B +1). One
of the measures of goodness proposed by Gibbons, Matias,
and Poosala [10] in this context is by how much does the
true rank of the ith bucket boundaries differ from in/(B +
1)—in particular they consider 1/n times the square–root
of the average sum of squares of the deviation, i.e., if the
error in rank is εi then the measure is μ = n−1

p
B−1

P
i ε2i .

The authors of [10] show that the above measure can be
made smaller than any constant ε > 0 but did not decrease
as n was increased. As a consequence of a better quantile
approximation, we can show that in their setting, which

allows random order, the εi ≤ n
1
2+ε and therefore μ′ =

O(1/n
1
2−ε) and this tends to zero as we increase the size of

the backing sample.

5. LOWER BOUNDS
We now present a lower bound for approximate median

finding in the adversarial model. It is generalization of a re-
sult from [17, 23] and involves a reductions from communica-
tion complexity results. The significance of this lower bound
is that it shows a strict separation between the random order
streaming model and the adversarial order streaming model.

Theorem 5. Finding the median of an adversarially or-
dered stream in a single pass requires Ω(n) space. Finding an
nδ approximate median of an adversarially ordered stream
requires Ω(n1−δ) space.

Proof. The proof uses a reduction from Indexing.

Let Alice have a length n binary string x =
x1 . . . xn unknown to Bob and Bob has an index
j ∈ [n] unknown to Alice. Bob wishes to learn
the value of xj . Then, if only one way commu-
nication is permitted from Alice to Bob, if Bob
is to learn xj with probability at least 1− 1/100,
Alice must send Ω(n) bits.

Assume that n−1 is a multiple of 2. Consider an instance
(x, j) of Indexing where x = x1x2 . . . x(n−1)/2 is a length
(n − 1)/2 binary string and j ∈ [(n − 1)/2]. Suppose there
exists a streaming algorithm A that finds the median of

278



a length n stream with space S(n). The A gives rise to
a protocol for Indexing as follows: Alice simulates A on
{2i + xi : i ∈ [(n − 1)/2]}. She then transmits the memory
state of A to Bob. Bob initializes A with this memory state
and continues running the algorithm on (n+1)/2− j copies
of 0 and then j copies of (n − 1). Notice that the least
significant bit of the median of this set of values equals xj .
Hence S(n) = Ω(n).

To further prove a lower bound for approximate median
finding we use an idea similar to that of streaming reductions
that was introduced by Bar-Yossef et al. [4]. Consider an
instance of exact median finding in a stream S of length
n. From above, this requires Ω(n) space. We reduce this
problem to finding an approximate median in an induced
string S′ formed by repeating each element of S, b times.
S′ is a length nb stream. Let A be an algorithm that finds
an |S′|δ approximate median. Now an (nb)δ-approximate
median of S′ takes the same value as the exact median of S
if b ≥ (nb)δ i.e. if b ≥ nδ/(1−δ). In this case the stream length

is |S′| = n1/(1−δ) and we know that we require Ω(n) space
to find the approximate median. The theorem follows.
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[6] E. D. Demaine, A. López-Ortiz, and J. I. Munro.
Frequency estimation of internet packet streams with
limited space. In R. H. Möhring and R. Raman,
editors, ESA, volume 2461 of Lecture Notes in
Computer Science, pages 348–360. Springer, 2002.

[7] A. Deshpande, C. Guestrin, S. Madden, J. M.
Hellerstein, and W. Hong. Model-driven data
acquisition in sensor networks. Proc. of VLDB
Conference (Best Paper), pages 588–599, 2004.

[8] P. Flajolet and G. Martin. Probabilistic counting
algorithms for data base applications. Journal of
Computer and System Sciences, 31:182–209, 1985.

[9] P. Gibbons and Y. Matias. Synopsis data structures
for massive data sets. DIMACS Series in Discrete
Mathematics and Theoretical Computer Science:
Special Issue on External emory Algorithms and
Visualization, A:39–70, 1999.

[10] P. B. Gibbons, Y. Matias, and V. Poosala. Fast
incremental maintenance of approximate histograms.
ACM Trans. Database Syst., 27(3):261–298, 2002.

[11] A. C. Gilbert, Y. Kotidis, S. Muthukrishnan, and
M. Strauss. How to summarize the universe: Dynamic
maintenance of quantiles. In Proc. 28th International
Conference on Very Large Data Bases, pages 454–465,
2002.

[12] M. Greenwald and S. Khanna. Space-efficient online
computation of quantile summaries. SIGMOD
Conference, 2001.

[13] S. Guha, A. McGregor, and S. Venkatasubramanian.
Streaming and sublinear approximation of entropy
and information distances. In SODA, pages 733–742.
ACM Press, 2006.

[14] A. Gupta and F. Zane. Counting inversions in lists.
Proc. of SODA, pages 253–254, 2003.

[15] P. Haas and A. Swami. Sequantial Sampling
Procedures for Query Size Estimation. Proc. of ACM
SIGMOD, San Diego, CA, pages 341–350, June 1992.

[16] P. J. Haas, J. F. Naughton, S. Seshadri, and L. Stokes.
Sampling-based estimation of the number of distinct
values of an attribute. In VLDB, pages 311–322, 1995.

[17] M. R. Henzinger, P. Raghavan, and S. Rajagopalan.
Computing on data streams. Technical Report
1998-001, DEC Systems Research Center, 1998.

[18] Z. G. Ives, A. Y. Halevy, and D. S. Weld. Adapting to
source properties in processing data integration
queries. Proc. of SIGMOD, pages 395–406, 2004.

[19] S. Kannan. Open problems in streaming. PPT Slides,
(request source).

[20] G. S. Manku, S. Rajagopalan, and B. Lindsay.
Random sampling techniques for space efficient online
computation of order statistics of large datasets. Proc.
of SIGMOD, pages 251–262, 1999.

[21] G. S. Manku, S. Rajagopalan, and B. G. Lindsay.
Approximate medians and other quantiles in one pass
and with limited memory. In SIGMOD, pages
426–435, 1998.

[22] R. Morris. Counting large numbers of events in small
registers. CACM, 21(10):840–842, 1978.

[23] J. Munro and M. Paterson. Selection and sorting with
limited storage. Theoretical Computer Science,
12:315–323, 1980.

[24] S. Muthukrishnan. Data streams: Algorithms and
applications. Survey available on request at
muthu@research.att.com, 2003.

279



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.3
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Academy
    /AgencyFB-Bold
    /AgencyFB-Reg
    /Alba
    /AlbaMatter
    /AlbaSuper
    /Algerian
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialRoundedMTBold
    /ArialUnicodeMS
    /BabyKruffy
    /BaskOldFace
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BlackadderITC-Regular
    /BodoniMT
    /BodoniMTBlack
    /BodoniMTBlack-Italic
    /BodoniMT-Bold
    /BodoniMT-BoldItalic
    /BodoniMTCondensed
    /BodoniMTCondensed-Bold
    /BodoniMTCondensed-BoldItalic
    /BodoniMTCondensed-Italic
    /BodoniMT-Italic
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BradleyHandITC
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /CalisMTBol
    /CalistoMT
    /CalistoMT-BoldItalic
    /CalistoMT-Italic
    /Castellar
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chick
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CopperplateGothic-Bold
    /CopperplateGothic-Light
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /Croobie
    /CurlzMT
    /EdwardianScriptITC
    /Elephant-Italic
    /Elephant-Regular
    /EngraversMT
    /ErasITC-Bold
    /ErasITC-Demi
    /ErasITC-Light
    /ErasITC-Medium
    /EstrangeloEdessa
    /Fat
    /FelixTitlingMT
    /FootlightMTLight
    /ForteMT
    /FranklinGothic-Book
    /FranklinGothic-BookItalic
    /FranklinGothic-Demi
    /FranklinGothic-DemiCond
    /FranklinGothic-DemiItalic
    /FranklinGothic-Heavy
    /FranklinGothic-HeavyItalic
    /FranklinGothic-Medium
    /FranklinGothic-MediumCond
    /FranklinGothic-MediumItalic
    /FreestyleScript-Regular
    /FrenchScriptMT
    /Freshbot
    /Frosty
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Gigi-Regular
    /GillSansMT
    /GillSansMT-Bold
    /GillSansMT-BoldItalic
    /GillSansMT-Condensed
    /GillSansMT-ExtraCondensedBold
    /GillSansMT-Italic
    /GillSans-UltraBold
    /GillSans-UltraBoldCondensed
    /GlooGun
    /GloucesterMT-ExtraCondensed
    /GoudyOldStyleT-Bold
    /GoudyOldStyleT-Italic
    /GoudyOldStyleT-Regular
    /GoudyStout
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /ImprintMT-Shadow
    /InformalRoman-Regular
    /Jenkinsv20
    /Jenkinsv20Thik
    /Jokerman-Regular
    /Jokewood
    /JuiceITC-Regular
    /Karat
    /Kartika
    /KristenITC-Regular
    /KunstlerScript
    /Latha
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSans-Typewriter
    /LucidaSans-TypewriterBold
    /LucidaSans-TypewriterBoldOblique
    /LucidaSans-TypewriterOblique
    /LucidaSansUnicode
    /Magneto-Bold
    /MaiandraGD-Regular
    /Mangal-Regular
    /MaturaMTScriptCapitals
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MSOutlook
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /OCRAExtended
    /OldEnglishTextMT
    /Onyx
    /PalaceScriptMT
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Papyrus-Regular
    /Parchment-Regular
    /Perpetua
    /Perpetua-Bold
    /Perpetua-BoldItalic
    /Perpetua-Italic
    /PerpetuaTitlingMT-Bold
    /PerpetuaTitlingMT-Light
    /Playbill
    /Poornut
    /PoorRichard-Regular
    /Porkys
    /PorkysHeavy
    /Pristina-Regular
    /PussycatSassy
    /PussycatSnickers
    /Raavi
    /RageItalic
    /Ravie
    /Rockwell
    /Rockwell-Bold
    /Rockwell-BoldItalic
    /Rockwell-Condensed
    /Rockwell-CondensedBold
    /Rockwell-ExtraBold
    /Rockwell-Italic
    /ScriptMTBold
    /ShowcardGothic-Reg
    /Shruti
    /SnapITC-Regular
    /Square721BT-Roman
    /Stencil
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /TwCenMT-Bold
    /TwCenMT-BoldItalic
    /TwCenMT-Condensed
    /TwCenMT-CondensedBold
    /TwCenMT-CondensedExtraBold
    /TwCenMT-Italic
    /TwCenMT-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Vrinda
    /Webdings
    /WeltronUrban
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /PDFX1a:2001
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


